14 research outputs found

    Anti-colorectal cancer activity of an organometallic osmium arene azopyridine complex

    Get PDF
    This first in vivo antitumour activity for an organometallic osmium arene complex, [Os(eta(6)-p-cym)(4-(2-pyridylazo)-N,N-dimethylaniline)I]PF(6), is reported. The complex delays the growth of HCT116 human colon cancer xenografts in mice, with negligible toxicity. Its activity appears to involve redox mechanisms and its potency towards A2780 ovarian and A549 lung cancer cells is increased significantly in combination with L-buthionine-sulfoximine

    Current applications and future potential for bioinorganic chemistry in the development of anticancer drugs

    Get PDF
    This review illustrates notable recent progress in the field of medicinal bioinorganic chemistry as many new approaches to the design of innovative metal-based anticancer drugs are emerging. Current research addressing the problems associated with platinum drugs has focused on other metal-based therapeutics that have different modes of action and on prodrug and targeting strategies in an effort to diminish the side-effects of cisplatin chemotherapy

    Osmium arene anticancer complexes

    No full text
    Drawbacks associated with anticancer chemotherapeutic cisplatin include tumour drug resistance, non-effectiveness against all tumours and lack of tumour-specificity resulting in severe side-effects (e.g. nausea, hair loss and kidney toxicity). The use of other metals such as transition metals rutheniumandosmium, may address the problems associated with platinum drugs and have received increased interest over the years. In this thesis the biological activity and aqueous solution chemistry of half-sandwichosmium (II) compounds of the type [(arene)OsII(X)(YZ)] n+ is explored. Chelating ligands containing nitrogen or nitrogen and oxygen donor atoms (N, NandN, O-chelatingligands) are investigated. It is shown that the chelating ligand has a large effect on the aqueous reactivity of the complexes. The introduction of functional groups on the chelate allowed for the ‘fine-tuning’ of the aqueous reactivity and nucleobase binding of the complexes. Also the nature of the coordinating arene was found to have an important effect on their biological activity. This could be rationalised by increased hydrophobicity with more extended arenes such as biphenylandtetrahydroanthracene, resulting in increased cellular uptake and increased cytotoxicity. Conjugating cell penetrating peptides to the complexes resulted in improved biological properties and opened a new way for functionalisation of the compounds. Several compounds reported in this thesis exhibit promising activity in the ovarian, colon and lung cancer cell lines and some could overcome cisplatin resistance in ovarian cisplatin resistant cell lines. Initial studies revealed cell death via apoptosis and the possible involvement of mitochondria in the apoptotic pathway. These results point to a novel pathway of activation for these complexes which is advantageous for addressing chemoresistance and effectiveness to oher types of cancers. This work shows that the biological properties of these compounds can be tuned by choice of ligands and also provides initial evidence for a novel pathway of activation.EThOS - Electronic Theses Online ServiceEngineering and Physical Sciences Research Council (Great Britain) (EPSRC)University of Warwick (UoW)University of Edinburgh (UoE)Society of Biological Inorganic Chemistry (SBIC)GBUnited Kingdo

    Functionalization of osmium arene anticancer complexes with (poly)arginine : effect on cellular uptake, internalization, and cytotoxicity

    Get PDF
    Attaching peptides to metallodrugs may result in improved biological properties of the complexes. The potential use of cell penetrating peptides (CPPs) as cell delivery vectors is attractive, since directed cell uptake of (metallo)drugs remains a major challenge in anticancer drug design. In this work, we report the synthesis of peptide conjugates of the organometallic OsII anticancer complex [(η6-biphenyl)Os(picolinate)Cl] with different arginine (Arg) chain lengths. Complexes conjugated to Arg5 or Arg8 at the 5-position of the picoline ring increase Os uptake into A2780 human ovarian cancer cells by ca. 2× and 10×, respectively, whereas a single Arg had no effect. Furthermore, a 15-fold increase in binding of Os to DNA, a potential target for these complexes, was observed for Arg8 compared to the Arg1 conjugate. The Arg5 and Arg8 conjugates exhibited fast kinetics of binding to calf thymus DNA and an ability to precipitate DNA at very low concentrations. In serum-free medium, the Arg8 complex was cytotoxic (IC50 33 μM) and appears to be a rare example of a bioactive organometallic peptide conjugate. Experiments on CHO cells deficient in DNA repair suggested that unrepaired DNA damage contributes to the cytotoxicity of the Arg5 and Arg8 conjugates. These studies demonstrate the potential for use of cell- and nucleus-penetrating peptides in targeting organometallic arene anticancer complexes

    Osmium arene anticancer complexes

    No full text
    Drawbacks associated with anticancer chemotherapeutic cisplatin include tumour drug resistance, non-effectiveness against all tumours and lack of tumour-specificity resulting in severe side-effects (e.g. nausea, hair loss and kidney toxicity). The use of other metals such as transition metals rutheniumandosmium, may address the problems associated with platinum drugs and have received increased interest over the years. In this thesis the biological activity and aqueous solution chemistry of half-sandwichosmium (II) compounds of the type [(arene)OsII(X)(YZ)] n+ is explored. Chelating ligands containing nitrogen or nitrogen and oxygen donor atoms (N, NandN, O-chelatingligands) are investigated. It is shown that the chelating ligand has a large effect on the aqueous reactivity of the complexes. The introduction of functional groups on the chelate allowed for the ‘fine-tuning’ of the aqueous reactivity and nucleobase binding of the complexes. Also the nature of the coordinating arene was found to have an important effect on their biological activity. This could be rationalised by increased hydrophobicity with more extended arenes such as biphenylandtetrahydroanthracene, resulting in increased cellular uptake and increased cytotoxicity. Conjugating cell penetrating peptides to the complexes resulted in improved biological properties and opened a new way for functionalisation of the compounds. Several compounds reported in this thesis exhibit promising activity in the ovarian, colon and lung cancer cell lines and some could overcome cisplatin resistance in ovarian cisplatin resistant cell lines. Initial studies revealed cell death via apoptosis and the possible involvement of mitochondria in the apoptotic pathway. These results point to a novel pathway of activation for these complexes which is advantageous for addressing chemoresistance and effectiveness to oher types of cancers. This work shows that the biological properties of these compounds can be tuned by choice of ligands and also provides initial evidence for a novel pathway of activation

    Cytotoxicity, hydrophobicity, uptake, and distribution of osmium(II) anticancer complexes in ovarian cancer cells

    No full text
    The cytotoxicity, hydrophobicity (log P), cellular uptake, aqueous reactivity, and extent of DNA adduct formation in the A2780 ovarian carcinoma cells for four osmium(II) arene complexes [(eta(6)-arene)Os(4-methyl-picolinate)CI] that differ only in their arene ligands as benzene (1),p-cymene (2), biphenyl (3), or tetrahydroanthracene (4) are reported. There is a correlation between hydrophobicity (log P), cellular uptake, nucleus uptake, and cytotoxicity of the complexes, following the order 3 similar to 4 > 2 > 1, suggesting that the arene plays an important role in the biological activity of these types of compounds. Cell distribution studies using fractionation showed that all four compounds distribute similarly within cells. DNA binding of osmium did not correlate with cytotoxicity, indicating that the nature of the DNA lesion may also be crucial to activity. TEM images of ovarian cells treated with 3 revealed morphological changes associated with apoptosis with possible involvement of mitochondria

    Organometallic osmium(II) arene anticancer complexes containing picolinate derivatives

    No full text
    Chlorido osmium(II) arene [(eta(6)-biphenyl)Os-II(X-pico)Cl] complexes containing X = Br (1), OH (2), and Me (3) as ortho, or X = Cl (4), CO2H (5), and Me (6) as para substituents; on the picolinate (pico) ring have been synthesized and characterized. The X-ray crystal structures of 1 and 6 show typical "piano-stool" geometry with intermolecular; pi-pi stacking of the biphenyl outer rings of 6. At 288 K the hydrolysis rates follow the order 2 >> 6 > 4 > 3 > 5 >> 1 with half-lives ranging from minutes to 4.4 h illustrating the influence of both electronic and steric effects of the substituents. The pK(a) values of the aqua adducts 3A, 4A, 5A, and 6A were all in the range of 6.3-6.6. The para-substituted pico complexes 4-6 readily formed adducts with both 9-ethyl guanine (9EtG) and 9-ethyl adenine (9EtA), but these were less favored for the ortho-substituted complexes 1 and 3 showing little reaction with 9EtG and 9EtA, respectively. Density-functional theory calculations confirmed the observed preferences for nucleobase binding for complex 1. In cytotoxicity assays with A2780, cisplatin-resistant A2780cis human ovarian, A549 human lung, and HCT116 colon cancer cells, only complexes 4 (p-Cl) and 6 (p-Me) exhibited significant activity (IC50 values < 25 mu M). Both of these complexes were as active as cisplatin in A2780 (ovarian) and HCT116 (colon) cell lines, and even overcome cisplatin resistance in the A2780cis (ovarian) cell line. The inactivity of 5 is attributed to the negative charge on its para carboxylate substituent. These data illustrate how the chemical reactivity and cancer cell cytotoxicity of osmium arene complexes can be controlled and "fine-tuned" by the use of steric and electronic effects of substituents on a chelating ligand to give osmium(II) arene complexes which are as active as cisplatin but have a different mechanism of action

    Amide linkage isomerism as an activity switch for organometallic osmium and ruthenium anticancer complexes

    No full text
    We show that the binding mode adopted by picolinamide derivatives in organometallic Os-II and Ru-II half-sandwich complexes can lead to contrasting cancer cell cytotoxicity. N-Phenyl picolinamide derivatives (XY) in Os-II (1, 3-5, 7, 9) and Ru-II (2, 6, 8, 10) complexes [(eta(6)-arene)(Os/Ru)(XY)Cl](n+), where arene = p-cymene (1-8, 10) or biphenyl (9),can act as N,N- or N,O-donors. Electron-withdrawing substituents on the phenyl ring resulted in N,N-coordination and electron-donating substituents in N,O-coordination. Dynamic interconversion between N,O and N,N configurations can occur in solution and is time- and temperature- (irreversible) as well as pH-dependent (reversible), The neutral N,N-coordinated compounds (1-5 and 9) hydrolyzed rapidly (t(1/2) > 4 > 1 > 9). In contrast, N,O-coordinated complexes 7 and 8 hydrolyzed slowly, did not bind to guanine or adenine, and were nontoxic
    corecore